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ABSTRACT

Reflection and transmission of electromagnetic plane

1 ~~~~~~~~~studied both theoretically and experimentally. This report,Part I of the study, is the theoretical presentation; Part ,
will deal with apparatus and experimental findings. The
study ii confined to rays with polarization parallel to the
edges of the plates and a plane of incidence perpendicular to

I these edges.

The theory of Carlson and Herins is extended and made
amenable to numerical predictions. Tables and graphs are
provided forthe coefficients pertaining to an air-metal-plate

- tmedium interface. A method is developed for the analysis of
reflecting and transmitting properties of slabs, or media of
finite depth.

1 ~~~~~~~~~~PROBLEM STATUS

-9 0 t f This Is an Interim report; work on this problem is
continuing.

IF meim nefae mto i evlpd o heaayssoAUTHORIZATIONf

NRL Problem No. R09-39R
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PHYSICAL OPTICS OF METAL-PLATE MEDIA;
PART 1, THEORETICAL CONSIDERATIONS

INTRODUCTION

This report deals with certain aspects of wave propagation in the presence of the
parallel-plate metal structures employed in microwave lens design. These structures
consist of a set of parallel, equidistant conducting plates. They are so oriented that the
polarization of the electric vector of the incident waves is parallel to the plates and the
plate separation is chosen between one-half and one wavelength. When this is the case
the phase velocity within the metal-plate structure is greater than in free space. This
fact has been utilized by Stiitzer,'56'7 Kock,3 and others for the construction of microwave
lenses. The lenses so constructed are unusual in their appearance because the metal-
plate medium has an effective index of refraction less than one, consequently convex lenses
are-diverging and concave ones converging.

The geometrical optics of metal-plate media has already been thoroughly explored.
The present study is directed toward the exploration of the physical-optical aspects of
these media.

Articles and reports dealing with microwave lens design indicate that the temptation
to treat metal-plate media formally as ordinary dielectric materials has been great. While
mnost relations of geometrial optics can be carried over formally from dielectrics to
metal-plate media, this is not true of the relations of physical optics. The different be-
havior of the latter media is in a large part caused by the fact that energy is stored at the
boundary surface of the metal-plate medium while no such storage takes place at the sur-
face of the dielectric.

The objective of this study is to examine the reflecting and transmitting properties of
metal.plate media. The ground-work in this field has already been laid by other investiga-
tors. In 1939 Stiitzer5 obtained approximate expressions for the reflection and transmission
coefficients for normal incidence. The wave constructions which led to these coefficients,
however, do not satisfy the proper boundary conditions. Several years later Carlson and
Reinsz attacked the problem anew. They solved the field problem rigorously for any angle
of incidence, requiring only that the plane of incidence be perpendicular to the metal plates.

Y the use of the Fourier transformation, Carlson and Heins obtained analytic expressions
for the reflection and transmission coefficients which are valid when the incident radiation
18 Subject to a number of restrictions.

An experimental program has been initiated at the Naval Research Laboratory and at
Oregon State College with the purpose of testing the predictions of the theory of Carlson
aId HeBes. The experimental program and its results are the subject of a separate report.
A Cursory examination of the work of Carlson and Heis is sufficient to convince one that a
Considerable amount of work is required to bridge the gap between the mathematical formalism

I ,- ~~~~~~~~~~~~1'I.



2 NAVAL RESEARCH LABORATORY

of their theory and the variables accessible to the experimenter. The theory predicts M
reflection and the transmission of a plane electromagnetic wave on a single bounda Sr
face separating free space and a metal-plate medium extending (in depth) to infinituy ju
case of a medium of finite depth, the reflection from the back" surface combines withj t
at the front surface. An observer can observe only the combinatioii of these reflectious
unless he can eliminate all reflection at the back surface by the introduction of prope
absorbing materials. In an experimental test of the theory it is then necessary either to
compute reflection and transmission coefficients for media of finite depth from the sieg
surface coefficients, or it is necessary to eliminate back surface reflections by the use (
absorbing materials. Both methods have been employed, the first one primarily at the
Naval Research Laboratory, the second at Oregon State College.

The first method requires the knowledge of the phase as well as the magnitude of the
coefficients associated with a single surface transition. While phase relations between
incident, transmitted and reflected waves are trivially simple for ordinary lossless dielec
tric materials, quite the opposite is true of metal-plate media. The expressions for phase

relations derived by Carlson and Heins are of the form of infinite series; their numerica
evaluation presented a number of difficulties. In view of this fact, the technique of theco_
putation is described in this report and tables of the coefficients computed are appended

K l l Expressions for the reflection and transmission coefficients were derived by Carlson
and Heins for the case when to every incident beam corresponds a single reflected bea.
This condition limits the angle of incidence below a critical value determined by the ratio
of wavelength to plate separation. When the critical value is exceeded, the edges of the

; plates act as a grating and diffracted beams arise. By extending the theory of Carlson
and Heins, expressions have been found for the reflection and transmission coefficients in

If the presence of a diffracted beam. Tables and graphs have been prepared to show the en-
ergy distribution between various beams. The tables are not as extensive as might be de-

sired because of limitation in time and manpower. Nevertheless those angles of incidence
which are of practical value are covered.

Having obtained the basic coefficients pertaining to a single air-metal-plate medium
interface it became necessary to consider the problem of composing reflections originating
at the front and back surfaces of a slab, or medium of uniform depth. This is analogous to
the well-known problem of reflection and transmission of transparent sheets. However,
the unusual phase relations prevailing in the case of metal-plate media make certain con-
siderations necessary which are not required in the case of ordinary dielectric materials.
For this reason, a theory of the metal-plate slabs was included in this report. It is devel-
oped along the lines of the modern theory of discontinuities in transmission lines introduced
by J. SchwInger.

The problems discussed in this report are less general than those of Carlson and Heins
in the following respect: It is assumed here that the parallel plates are so stacked that the
plane containing their edges Is perpendicular to the plates, while Carlson and Heins permit
this plane to make any angle with the plates. Perhaps the most serious limitation of this
work is that it had been confined to a plane of incidence perpendicular to the edges of the
plates. This is the plane of the maximum constraint from the point of view of wave propa-
gation within the medium. The examination of other planes of incidence and other orien-
tations of polarization Is in progress.

P 



NAVAL RESEARCH LABORATORY

Terminology and Elementary Properties

A parallel-plate or metal-plate medium is a part of space containing a number of
parallel, equidistant, highly conducting sheets. Such a structure is shown in Figure 1 with
the plates perpendicular to the plane of the paper.

surface
. .Ii -~~~~~~~~~~~~~~~~~~~~I
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Fig. I - Parallel plate medium (side view)

It is assumed that the plates extend to infinity forward, back, and to the right, that the
edges of the plates are straight and perpendicular to the paper, that the plates are stacked
uniformly as shown in Figure 1. Moreover, to avoid the complications caused by edge ef-
fects, it is assumed that there are many plates and that the investigation is confined to the
center part of the structure so that one plate is not distinguished physically from the adja-
cent ones by virtue of its position. In mathematical parlance this assumption is expressed
by postulating an infinite number of plates, located at the points satisfying the conditions
Z _ x cotan a, x = ma, m = 0, +1, 2, The plane through the edges of the planes is called
the surface of the medium.

The parameters determining the electrical properties of the medium are the plate sep-
aration a, the plate thickness t, the conductivity a and the shape of the surface of the medium
determined by the angle of stacking a. The propagation of electromagnetic waves within the
Sledium is determined by a and a; the effect of the latter being usually negligible. Surface
Phenomena, such as reflection of an incident wave will depend on a and t also.

Metal-plate media are generally intended for use in a well-defined frequency region
and the parameters of the structure are so chosen that t is very small compared to the
Wavelength X, a is of the same order as X and a is that of ordinary metals (5 x 10' mhos
Meter). In first approximation one always assumes t = 0 and a =c. To avoid complications,
this study is restricted to the case a= 900.
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NAVAL RESEARCH LABORATORY

Only those electromagnetic waves will be considered whose electric vector is parel
to the metal plates. The plate separation is generally so chosen that at the given freque
only one mode of oscillation is propagating in the medium. This condition requires e

1 A <2. (1)

It is well-known that there is no propagation within the medium for A > 2a and that for
i < 2a the ratio of the phase velocity in free space to the phase velocity in the medium is

2 0 | I ~~~~~~~~~~~~~~~~~n (2)

This quantity is called the index of refraction of the medium. Let k be the propagation
i constant in free space; k = 217/X, and let K = nk be the corresponding quantity in the medium

IEquation (2) is equivalent to

I2
k2ss2+ (). (3)

The value of n determines the propagation within the plates and also the geometrical
i : f ez l optics of the rays incident on the surface of the medium. Rays incident in a plane parallel

to that of the plates are not constrained, while rays incident in other planes are all con.
strained by the plates. The classical argument pertaining to the propagation of phase
fronts shows that unconstrained rays follow Snell's law. When rays are incident in the
plane of maximum constraint, the (x,z) plane, the Poynting vector in the medium is always
directed along tMle z-axis. Still one might speak of refraction at the surface in terms of
equiphase surfaces. Consider the case when the plates are not staggered; i.e., a = 900,
and let the radiation be incident at an angle , as shown in Figure 2. The points PO, pI,
P.1, etc. will lie on a discontinuous equiphase surface which is approximated by the plane
shown in dotted lines. Let the inclination of this plane be Or. Elementary calculation
gives

sinG -
go ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~()

tan e 
r

Incident R
phase front IRefracted

phose front

.Z.''z' . \ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~Pze.
r~~~~~~~~~~~~~~~~~~~~O

WOV~~~~~~~~~~~~P
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Fig. 2 - Refraction in the plane of constraint
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NAVALRESEARCH LABORATORY 5

REFLECTION, TRANSMISSION, AND THE GRATING EFFECT

When a plane wave is incident on the surface of a metal-plate medium, currents are
induced on the plates. In addition to waves set up in the medium there will be reflected or
scattered waves in free space. Analogy with dielectric materials leads one to expect a
transmitted and a reflected plane wave. However, the analogy is an incomplete one since
the situation at the surface of the metal-plate medium differs in many respects from that
encountered at the surface of dielectrics.

First of all, the electric field at the surface of a metal-plate medium is not uniform,
but a periodic function of position. Therefore, transmitted and reflected waves cannot be
uniform plane waves as they are in the case of dielectrics. Only at a distance from the
surface might one expect approximately uniform plane waves.

There is never more than one reflected wave from a plane dielectric surface, but the
edges of the metal-plates act as a grating and for a single plane wave incident at an angle
6, there will be reinforcement of scattered waves in all directions Os which satisfy the
relation

sinO+sinO =m ,m = 0, 1, i 2,... . (5)

There will always be the beam Os = -6 corresponding to m = 0. This is the case of com-
mon (specular) reflection in geometrical optics. There might be other beams, provided
that the elements of the grating are sufficiently far apart. However, when

1 + Isin 01< - (6)

then (5) cannotbe satisfied for any value of m other than zero; thus there is only one re-
flected beam. Since a = 90° has already been assumed, one may, without further loss of
generality, restrict himself to positive angles of incidence and omit the absolute value
signs in (6).

The electromagnetic disturbance caused by the incident plane wave at the surface of
the medium results in oscillations in the space between the plates. The latter act as
Waveguides of uniform width and infinite height. They permit the passage of an oscillation
of a given frequency in several modes propagating with different velocities. In all appli-
cations the spacing a is chosen to satisfy the inequality (1), so that in the contemplated
frequency range only the fundamental mode is propagated. All other modes excited at the
edges are attenuated. The energy associated with these nonpropagating modes is stored
in the part of the space surrounding the edges. The presence of this energy is responsi-
ble for the phase shift in transmission through the surface of the metal-plate medium. If
one overlooks the field present in these higher modes he is led to erroneous boundary con-
ditions in the process of joining the incident, reflected and propagated waves by means of
a continuity argument. These conditions in turn lead to incorrect reflection and trans-
rDission coefficients. 5

A rigorous theory of metal-plate media is quite difficult and has not yet been fully
developed. Carlson and Heins2 solved the problem for the case of a plane wave incident
ill the plane of maximum constraint assuming infinite conductivity and zero plate-thickness.
Their mathematical procedure is far too complicated for reproduction here. Only the
Principal results will be stated for the special case a = 90°.

U
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THE RESULTS OF CARLSON AND HEINSt

* After formulating the electromagnetic field problem in terms of an integral equatu
of the Wiener-Hopf type, Carlson and Heins proceed to solve this equation by the use of
the Fourier transform. The crucial step in the solution requires the splitting of a colpI~t
transcendental function In two parts; one of which has no zeros or poles in the upper hex
plane, the other is similarly behaved in the lower half-plane. The function in question i.
(for a = 900)

f(w) = Buncos atsin a ri'-w co s
VZW) = s772Ejos a - Cos (ak sin J (7)

It is written in the form

(8)

where K_(w) has no poles dr zeros below the line C in Figure 3 and K+(w) has none above,

No zeros and singularities of K4 in this region-

I (above thb curve C)

- e C
ac

7k -- 0-- ow-
0-k

I'
Rea axis

soe ,

Fit. 73 - The plane w

tFPor a complete understanding of the next two sections, -it is helpful to read the article
of Carlson and Heins." In order to facilitate a comparative reading, the convention of
using a time dependence in the form'of e- t has been retained in this section. Consequent-
ly, the reflection coefficient is written in tke form of r - jrl eiP . To cosvert to the
standard notation used in other parts of this report it is only necessary to replace i by j.

.=--- --....*---.-.*-**-------.-.---------.-----------.--.--M-.. --- -. -- ` .--_ .. .-.- -i: L11 1I

4

L.

6

f(.W)- K_(w)
= K+(W) 9

7--.71. , r, w'.
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The functions are properly normalized to insure desired behavior at infinity. The actual
form of K+(w) is

.(w =r w + k cos 0V(w) W(w) exp faw (ln 2 - 1)}t
2 W + KC U(w) epU 9

where

law\Y e (aw+ ak sin 0 (10)
V(w) ns 1 'n 2n) exP +7n 2irn

W(w) + ) {aw + ak I sn P (11)An 2irn/ ex Vir 2irn 

U(w)=,P' 2 (en irnw) exp a7r-n (12)

with

- n (1 -ak2in) (si)n, (13)

ei=1- (ak)2 (14)

In order to Insure proper behavior of U, V and W in the upper half-plane, the sign of
All anden has to be determined as follows: When Wn - 0, then An < °, when kn < 0, then
i~n> 0. On account of the restriction expressed by (1), e2n is always positive and the cor-
rect choice is e n > 0. The numerator of (8) then takes the form:

K.(w) a w- aU(-w) exp wia (in 2 1-) (15)
7r w - k cos 6 V(-w)W(-w) exP _r

Assuming an incident field of the form Ex = 0, Ez = 0, Ey = inc = exp {ik(x sin 0 +
7 COs 6)} the total electric field is represented by the following equation:

1 ( K(k cos 6) I(w, x) eiwz dw
0(x, Z) = Oinc + 7 ic K+(w) (w - k cos 9) sin a w (6

Where

I(w,x) = fsin(x-n'a-a) _Pk - eika sin 0 sin(x-na).$i7Twi ein'ka sin 6 (17)

I:

7
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and n' is the largest integer not exceeding x/a. This is the special case (a = 900) of te
principal result of Carlson and Heins (p. 325). The path of integration is shown in pig L

The reflected and transmitted fields are obtained from (16) evaluated for negative i
positive values of z respectively. One can show that the behavior of the integrand inr (16)
is such that the curve C can be closed by a large semicircle in the upper half-plane for
positive values of z and by a similar semicircle in the lower half-plane for negativeval
of z. The contributions from these circular arcs vanish as their radii tend to infinity. It
is therefore possible to evaluate the integral in (16) by means of the theorem of residues
the poles of the integrand being wo = k cos 0, the zeros of K+(w) and those zeros of
sin a -kf_ w2 which are not cancelled by the numerator of the integrand.

In the case of the transmitted wave, z is positive, the path of integration is closed in
the upper half-plane, therefore only poles situated above C need to be considered. Since
K+(w) has no zeros in this region, the poles are at w - k cos 0 and at such points wrn in
the upper half-plane which satisfy the equation a Yk -wm' = inr, where m is a Positive
integer. The restriction of single mode propagation within the medium, expressed by the
inequality (1), has the consequence that all wm with m > 1 are pure Imaginary, while
w, = (k2 - 7 /a2) '/A = K. For m > 1 it is then proper to write wm = ipm, where Pm > 0.
The expression obtained by evaluating the residue at wm will contain the factor e-PMz,
indicating a nonpropagating wave. Only real poles generate propagating waves. In fact,
the residue at wo generates -0inc' the one at w = K generates t e1 KZ sin (iTx/a), where

ika sin 8n'+ I X K (wq) 1 + e in'ak sinG. (18)
t W aK+(K (K - W0) e(8

The factor ein'ak sin 0 takes into account the phase delay from one channel of the medium
to the next. It is sufficient to concentrate on a particular pair of plates and to examine
only the field between them. In this case one may set n' = 0 and simplify the expression
of the transmission coefficient to:

t =It[ ei -r' ' K (k cos 0) I + e ika sinG
t=Itle a K k cos 6- K (9

Assuming that all deltas defined by (13) are real, one obtains after a lengthy calculation:?

2Z2 k cos 0 2A2 Cos 0
ItV kcos 9 +x cos9 +h (20)

where n is the index of refraction defined in (2).

For the phase of the transmission coefficient (19) yields readily:

r' = 1 a k sin 9 + arg K+(k cos 0) - arg K+(K), (21)
2

t Actually Carlson and Heins used a k with a positive imaginary part, integrated along the
real axis and then Permitted Im k to approach zero. The location of their path of integra-
tion with respect to the singularities is identical to that shown in Figure 3.

t See Appendix. Eqs. (4A) and (6A).

i

'I

i
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provided cos 0 > n which is usually the case. The first term in this expression is due to
the location of the origin. It disappears when the origin is shifted to a point half-way be-
tween the edges, such as Q in Figure 2.

The reflection coefficient is obtained by evaluating the integral in (16) for large nega-
tive values of z. In this case the path of integration is closed in the lower half-plane.

If the quantities,& n, defined by (13) are all real, then, apart from w = _k cos 8, K+(w)
has only pure imaginary roots in the lower half-plane. -The latter generate Attenuated waves
as was shown before. The roots of sin a 1'_ -w' in the lower half-plane are cancelled by
the poles of K+(w), therefore there is one propagating reflected wave. It is of the form:

reik(x sin -z cos 9) (22)

with

Or' K (k cos 9) (23)
r = IrI e = - 2k cos 9 K4(-k cos 9)'

where K+ is dK+/dw. Equation (23) gives:

PI = arg K+(k cos 9) - arg K+(-k cos 9) + IT. (24)

When the deltas in the functions V and W are all real, I r i can be computed by elemen-
tary means. In this case:t

|I! I! ocosO93)i.2k cose|kcos5+It 0 (25)
K I(-k cos 9) 1 1kcos_+iFI

and hence from K= nk and equation (23) follows

cos 9 - n (26)

The absolute value sign has been omitted on the right because the restriction on the
deltas implies cos 9 > W. This will be shown immediately. First, it is proper to examine
the meaning of the restrictions an > 0 for all values of n. For negative values of n, An is
positive for every angle of incidence 9 (in the first quadrant). This is a consequence of
COfl~dition (1), imposed to insure single mode propagation between the plates. The condition

n = 0for positive n is, however, more restrictive. Since An < A^n+,, only Af needs to be
examined. The latter is not negative if, and only if,

1- ka sin 0 >Sa (27)
Or

X 2v s nG.(28)_ _ ~~~~~~~~~=a = Ia- + sin 09. (8a k

'h factors resulting from the infinite products cancel out, since for any real number w
c o~l I= |IV(wo,) . IV(-wo) = I W(wo) when all deltas are real and I l(-wo)j=j1(wo) I be-
eLsc the epsilons are always real on account of condition lx). The evaluation of A+ in the
Oral case is discussed in the APPendix.

9



NAVAL RESEARCH LABORATORY

This is the inequality (6) derived from the elementary grating theory. It restricts the
angle of incidence 9 to such values which permit only a single reflected beam. Equationj
(20) and (26) are valid only when 9 satisfies this condition. The limiting value of 6 for
which the equality sign holds is shown in Figure 4 as a function of 2a/X.

90

80*

- - - . ..r . ..- . . . . ..--- - - -t-_ -1.- I A -.- - -. - - --
- ~~~~~~~~~~~ ------
i0 f 70i Pd b v

50040 _--_ _ ----_ X
30 _--r--4z _-5 z _ _

200 - - - -~~~~- 

L05 LIO L15 120 125 L30
to

Fig. 4 - Limiting valve of angle of incidence for single reflection
9L = arc sin (_ -1 )

The inequality cos 0 > a now follows readily. From (28):

1 -sin 9 > 2 -aX = 2(1 -2)-
For any positive 9

1 + sin 9 > 1 = 212 (30)

and according to (1), 2 > 1 + X/2a, therefore

1 + sin 0 > (I + X/2a). (31)

The desired relation is the product of the inequalities (29) and (31).

MULTIPLE REFLECTION

It is worth while to extend the theory of Carlson and Heins to cover the case of multiple
reflected beams. The case of most importance is the one of two reflected beams. This

3

I

I

I

I:

iii

I

tU

(29)

III III III III III III III III H FT7_TI I-
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NAVAL RESEARCH LABORATORY 11

corresponds to an angle of incidence 0 for which Al2 < 0, but ev2 > 0. According to, (13) '

-_/2= (5)2{ (.k sin )) (32)

Clearly -_ <(ak/2w7)2, therefore whenever Af < 0 there is an angle 0' such that

Al =-i cos O. - (33)

From (32) then follows

i sin =j 2j -sin 5. (34)

It is proper to restrict oneself to the use of the + sign in (34) since (33) does not specify
the sign of 0'. Then

Zr f
sin B + sin n = 2a = -A. (35)

The function K+(w) now has an additional real root, since the factor A, -iaw/Zr van-
ishes when w = -k cos i', When the presence of this real pole is taken into account in the
evaluation of the integral in (16), a new propagating wave is found in the region z < 0. In
fact, from (17) and (35) follows I(-k cos 6', x) = -sin(ak sin 0') exp(-ikx sin 9') and the
contribution of the pole is rW exp {. k (x sin 0' + z cos e'}, where

_ K+(k cos 9) 1 (36)

K'(-k cos 9') k(cos 9 + cos 9')l

This is the first order diffracted beam; it propagates at an angle 9' with the surface normal.

The quantities necessary for the calculation of ItJ, JrI and Ir0l I are evaluated in the
Appendix for the case when A2 < 0, but A: > 0. The following expressions result:

2 Scos 6fcosB'-fl cos9'+ cosC , (37)
cos -c + 0 n cos 9' +fn cos B' - cos i

= cos 8 - n cos + cos6' , (38)
Cos0+ n Cos 0- Cost |

{ -lO l _ 2 cos 9 cos - n C os . (39)
r Icos of - cos 9l cos + n n + cos 0'
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These equations are valid for those angles of incidence 0 which satisfy the inequaliti

< I + sin 9 <4 a <7~~~~~~~~~~~~~~~~~~~~~~~~~~~ (40)
They can be put in a symmetrical form by the introduction of the angle SO = arc cos ,*

* I | ,, It is interesting to examine these coefficients for the angle of incidence 0 = o. Fror
cos 00 = n follows sin 9O = A/2a. Then (35) takes the form:

sin 9 + sin ' =2 sin. (41)

Therefore, if two of the angles 9, 0', 0O are equal, then all the three are equal. The ex
* i pressions (37), (38), and (39) are of the indeterminate form 0/0 for 9 = SO.

On evaluating lim cos 9t- cos 9o according to L'Hospital's rule and noting that
Cos 9'- Cos 9,,2,. 2 . b~~~~~~~too

d9'/d9 = -1 when 9 = 9', one obtains Ir = 1/2 for 0 = 0O. By comparing (23) and (36) it is
clear that Ir I and Jr" | must be equal for 0 = 9', therefore Irt I - 1/2. A brief calculation
yields It| = 1.

ENERGY RELATIONS

Since the experiments are generally so designed that energy flow and not amplitude is
detected, it is of practical value to derive expressions for the former. The quantity
Pr = Ir I2is a correct measure of the relative power in the beam reflected according to the
law of geometrical optics. The quantity I t I is the maximum of the electric vector between
a pair of plates, the space variation being sinusoidal. Thus the average rate of energy
flow in the direction of the z-axis is 'nIt 2. The change in cross section of the beam at the
surface introduces a factor sec 0, therefore the relative transmitted power is:

1 ~~~~ 4 ncos 0(2
't =2 llt I sec (n+cosor (42)

for the range specified by (28) and

4 a cos 0 cos '-n cos O' + cos a
X f 0 't =(n + cos )3'cos 9' + n cos 0'- cos e (43)

for the range specified by (40).

In general, there is a change in cross section in the case of the diffracted beam.
Therefore

p"1 clos 9' (ja4)

r cos 0

when 9 satisfies (40) and Pr() = 0 when 9 satisfies (28).

I ]
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The quantities Prv Pr(')and Pt describe the division of power incident on a surface
element of an air-metal-plate medium interface of infinite extent. The conservation of
energy requires Pr + Pr~" + pt = 1. Figure 5 shows the variation of power division with
angle of incidence for 2a/X = 1.10, 1.20, 1.30 and 1.40.

When 8=' = 0 , the pr = ') = 1/4 and pt = 1/2; i.e., one-half of the energy is trans-
mitted into the metal-plate medium, the other half is equally divided between two beams
located symmetrically about the surface normal.

L. J. Chut previously deduced this division of power for 0 = 00 by elementary con-
siderations. He wrote the incident wave in the form

flnc = exp {ik(z cos 0o+ x sin03 = exp{iknz} exp {i'x/a}

= exp {inkz) cos rxA + i exp {iknz) sin 7rx/la. ( i

Each term on the right of (45) corresponds to a wave carrying one-half of the energy. The
second term satisfies the boundary conditions within the metal-plate medium; it is the
transmitted wave. The first term represents a wave antisymmetric about the plane x = a/2;
it is responsible for the storage of energy at the interface and for the presence of reflected
waves. By elementary symmetry considerations one can deduce that the reflected waves
make equal angles with the surface normal and carry equal amounts of power. 

It is of some interest to note that if the index of refraction of a metal-plate structure
is chosen large for the purpose of reducing reflection at normal incidence, the advantage
so gained is quickly lost when the same structure is illuminated at an angle which per-
mits the appearance of a diffracted beam. This is born out by Figure 5.

MEDIA BOUNDED BY TWO PARALLEL SURFACES

The theory described in the preceding section gives the reflection and the transmission
coefficients of the air-metal-plate interface. In any experimental test in which the energy
propagating between the plates is not completely absorbed, it is necessary to take into
account the multiple reflections within the parallel-plate structure. A metal-plate medium *
Of finite uniform depth bounded by plane surfaces will be called a metal-plate slab. The
reflection from such a slab depends on the reflection coefficients of the front and of the
back surfaces and on the distance between these surfaces.

From the point of view of theory, the basic quantities are the coefficients describing
the air-metal-plate interface. The experimenter, however, always operates with slabs or
Other shapes of finite depth. It is possible to reduce greatly the effect of multiple reflec-
tions by constructing deep slabs containing absorbing wedges, but some uncertainty with
regard to the phase and magnitude of the back surface reflections still remains. I is
therefore desirable to deduce expressions describing the behavior of slabs, or metal-plate
media bounded by two parallel surfaces.

The corresponding problem has been solved in connection with dielectric sheets and
lOssless transmission lines. Let r, be the reflection coefficient and t, the transmission

/1 Oral communication; see AcknowLedgments.. 
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I

coefficient of the interface separating media 1 and 2 when the radiation is incident from
medium 1 (usually air) and let r2 and t2 have similar meanings for a radiation incident
from medium 2. These quantities will in general depend on the angle of incidence 5. To
distinguish coefficients pertaining to the slab from those pertaining to single surfaces,
the former will be denoted by capital letters. One can show that the reflection coefficient
of a slab of medium 2 surrounded on both sides by medium 1 is given by the equationt

.r2 tI t2 exp 2j 6
R= r 1 + 1 - 2 ex j64 (46)

where 62 is the phase delay between the two intersections of a normal of the slab with the
surfaces. In the case of a lossless dielectric slab of thickness d and of refractive index
n one has 62 = dk2 cos 02, where k2 = nk1 = 2flX and 02 is the angle of refraction.

Similarly, for the transmission coefficient one finds in the literature

=1 t texp 2 6
To= 1 2'ep|2 (47), 

A few words of caution about the phases of these coefficients are in order. The coef-
ficient R refers to the front surface of the slab. If the plane of reference is chosen else-
where, say in the plane of symmetry of the slab, the phase of R must be altered. Equation
(47) gives the phase of the transmitted wave at (x, y, d + 0) with respect to the phase of the
incident wave at (x, y, 0), and not the change of phase produced by the introduction of the
slab into the path of the radiation. If the latter is desired, one has to multiply Ti by
exp J61, where Oi is the phase delay through a slab of thickness d made of medium 1. When
medium 1 is air, which is usually the case, 6, = 2rd cos O/X.

Let the incident wave be of the form exp {-jk(z cos 9 + sin 0)j tand let the slab be
bounded by the planes z = 0 and z = d. The reflected wave will then have the form
R exp {-jk(-z cos 0 + x sin 0)} and the transmitted wave in the region z > d will have the
form T-exp {.jk(z cos 6 + x sin 0)}, where T = Ti ej6 ', For slabs bounded on both sides
by the same medium, the coefficient T seems more fundamental than TI, although the latter
is more commonly found in the literature. T does not depend on a plane of reference; it
compares the wave in the presence of the slab with the wave in its absence.

The principal difference between dielectric slabs and metal-plate slabs is that in the
case of the latter the single surface coefficients r,, r2, t, and t2 are not real. The simple
equations connecting these quantities must be replaced by new ones. These will now be
derived for the case when the angle of incidence is such that there is only one reflected
beam. The discussion can be made general so as to include lossless dielectric slabs, and
discontinuities in transmission lines as well.

GENERAL DISCONTINUITY RELATIONS

Let the plane z = 0 be a locus of discontinuity for the propagation of electromagnetic
waves. This plane might be the boundary of two dielectric media, the surface of a

tRef. 2,I-35$- 
It:he time dependence is exP jit.

4

.

I
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metal-plate medium, a place where the dimensions of a transmission line undergo a Sudden
change, etc. In general, the propagation constants on the two sides of the discontinuityw
be different.

To simplify matters it is practical at this point to exclude multiple propagation and
multiple reflection. While in the neighborhood of the discontinuity energy might be stored
in the form of 'higher" modes,it is assumed that far away from the discontinuity on either
side there is only one wave propagating toward and one away from the discontinuity. The
case of plane waves arriving at the plane z = 0 at oblique angles of incidence is included
in this discussion. To each angle of incidence 91 in the medium to the left of the discon-
tinuity the law of refraction orders an angle 02 in the medium to the right. The four waves
to be considered together have the directions of propagation 61, - i, iT 0- E * These
are shown in Figure 6.

MEDIUM I MEDIUM 2

Fig. 6 . Waves on an interface

It is appropriate then to observe the discontinuity from far away on both sides, so fat
that one has to deal with a pair of waves on each side. Formally such a system is identical
with a two-terminal pair network. The plane (or propagating) waves observed far from the
discontinuity can then be extended mathematically to the plane z = 0, and one might speak
of the amplitude of the plane wave at z = 0 even though a very complex field exists in the
latter neighborhood. When for large negative values of z one has a wave of the asymptotic
form b. exp {ikz}, the quantity b, will be regarded as the amplitude of this wave at z = 0.
This is the customary procedure employed in discussion of discontinuities in waveguides.4

Let a, and a2 be complex numbers proportional to the electric amplitudes at z = 0 of the
waves traveling toward the discontinuity and let*b, and b2 have a similar meaning for waves
traveling away from the discontinuity. The subscripts are indicative of the media 1 (left)
and 2 (right). Let a be a vector with components a, and a2 and let b have a similar meaning.
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On account of the linear character of Maxwell's equations and the boundary conditions the
vector b depends on a linearly:

b -8a. (48)

The scattering matrix S connects the incoming and the outgoing waves. It is easy to
see that

(ri t2)()
8 = ~~~ ~ ~ ~~~~~~~~(49) ,

I, r2 ' 

It has been shown that when the vectors a and b are properly normalized, the matrix
S is symmetrical.t -

When no dissipation of energy takes place at the discontinuity the conjugate matrix S*
Is the inverse of S.$ In symbols:

SS = 1, (50)

where I is the identity matrixJ

The matrix equation (50) is equivalent to the following four scalar equations:

rJ2 +t, tt* =1, (51)

r +t t 2* = 1, (52)

rl t * + t2 r* =, °' ,

t r* +r t* =0. t54);
From (51) and (52) follows: I l 2 l

IN 2 14 r2 = tI t 2* - tI* t2 = 2 Imt t2*- (55)

to. G. Rey 4. lP. 148. A matrix S is called symmetrical when it is identical with the
transposed matrix S obtained by interchanging rows of S with its columns. Proper
rllalization of the vectors a. and b means that the factors of proportionality between

tktir components and the electrical quantities are so chosen that I la, 12. la2. I
41bi12 and J Ib2 1

2 represent the mean energy flows in the four waves involved. ' The
1 5lues of r, and r2 are independent of the normalization and so is the product t, t,

4ce 646) and (47) contain tt and t. only in the form of their product, so far as slabs
or' concerned, the normalization is quite immaterial.

trhe symbol indicates the complex conjugate of the quantity it follows.

ICf. Ref. 4. p. 140. A direct proof of (50) can be had by reversing the direction of
tite and thus interchanging incoming and outgoing waves. This change also replaces
*tery element of S by its canplex conjugate, since time reversal is equivalent to the
?eplacement of j by -j. One obtains in this way 4L ,Sb :which together with (48) suffices
to tstablish (50).

,, . S X~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~I
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The equality of the real number on the left of (55) with a pure imaginary on the right I..
plies that they are both zero, therefore

Irl = Ir2N (5

and tbtb* is real. In fact, from (52) follows: tit 2* = 1 - I 02I2 2 0 because 1r2 i cannot exc
, - one. Therefore arg t4 = arg t2. Let p = I r, I and T = y'tta = VF.p. One may write:

=-- pe t X r2 =peiPt 1=qre it 2=qlre ,

where the positive factor q depends only on the normalizationt of the amplitudes. Fro>,
* : (53) then follows:

~; I exp j(-p' +T')= -exp j(p" - = exp J(p" -r'+ 7f). (58

Hence:
pi + p" - 2pr= v. (59r

This last relation is of fundamental importance. In the case of a dielectric sheet in air
p = it, p "= 0 and r'= 0. In the case of metal-plate media p, p" and r' depend on the
frequency.

It has been assumed so far that the origin is located at the discontinuity. This condi_
tion will now be removed and the concept of discontinuity generalized in preparation for
the discussion of slabs.

The position of the origin is physically immaterial, a shift of the origin leaves the
magnitudes of the reflection and transmission coefficients unchanged. If a new coordinate
system is introduced with its origin 0' at (0, 0, 1), then a, exp (-jk1 z cos 9 ) and as exp
(jk2 z cos 02) will be replaced by al' exp (-jkiz' cos 9) and as' exp (jk2z'cos 02) respectively,
where, on account of z = z' + I

a= a, e J=e , a' = a 2 eJO2

i with# 1 = k, 1 cos , 02 = k2 1 cos 92. $ Similarly bi and b2 are replaced by bl' = bi eJO, and
h;' = b2 e -J2 respectively.

The relations between the amplitudes in the two systems of reference can be expressed
in a compact form by the use of the matrix

{JO, 0n\
: f . I P = To -J+2 J '. ~~~~~~~~~~~~~~~~~~~~~~~~~(60)

, }~~~~~~~~~~~~~~~0
.~~~~~~~~~~~~~~~~~~~~~~~( l

* I; I t See footnote on p. 17.

* $ When this theory is applied to discontinuities in transmission lines 6 * = o and kl and
kEare the pertinent phase constants of propagation

0 ~~~_ _ _ _ _ _ _ _ _ _ _ __a_ _._ _._ _ _
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In fact A'=P'a, b'= Pb. (61)

Then (48) becomes b' = PSPa', (62)

showing that the shift of origin changed the scattering matrix S into PSP. Elementary
matrix calculation results in:

PS P / r exp2jo 1 t2exp j(0 -'2)\

\, exp J(4, -,2) r2 exp - 2j02 / (63)

In order that the preceding results be valid, it is not necessary that there should be a
single plane or point of discontinuity. It is sufficient, that in some part of the space, say,
for large negative z, there should be two plane waves progressing in opposite directions
(or in directions making angles 9, and iT - 91 with the z-axis), and that in another part of
the space there should be a similar pair of waves. The amplitudes of these waves should
be linearly related and there must be no dissipation of energy so that every process is
time reversible. It is clear then that lossless discontinuities located in lossless media
can be lumped together into a single lossless discontinuity in the same way as a series of
four terminal networks can be lumped together into a single four terminal network. The
single discontinuity representing the entire system of discontinuities can then be shifted to
any convenient point. The matrices associated with a location of this composite discontin-
uity are the elements of the matrix family P S P, where S is the matrix associated with a
fixed location of the discontinuity with respect to the coordinate system.

The quantities 0l and O2 entering into the definition of P have to be determined with
some care since it is not at all clear (or relevant) what happens in the neighborhood of
the origin where the discontinuities might be located. A shift of the origin must be thought
of as a shift of the reference system of the observer, therefore in the equations 0l = kIi cos 9
and O2 = k 2 1 cos 92 the appropriate values of k and 9 are those which prevail at the site of ob-
servation; i.e., far removed from the discontinuity. When, for example, the composite dis-
continuity consists of a dielectric, or metal-plate slab surrounded by air, then 0 = 0:, since
the observation occurs in air, k2 = k4, and the emergent beam is parallel to the incident one.
This situation prevails for a large class of discontinuities which deserve closer examination.

When a discontinuity possesses a high degree of symmetry this fact is reflected in the
matrix S provided that the system of reference is properly chosen. In the case of a slab
(dielectric, or metal-plate) or a symmetric iris in a waveguide, the plane z = 0 may be
made to coincide with the plane of symmetry of the structure. A reversal of the positive
direction of z will then leave the matrix S unchanged. This reversal is equivalent to an inter-
change of the indices 1 and 2. Therefore r, = r2, t1 = t2. From (59) then follows:

IP' - 2'=j. (64)
This result is formalized as a theorem.

The phases of the reflection and the transmission coefficients of a symmetric lossless
discontinuity differ by 900 provided that the point of reference is the center of symmetry.

In experimental work it is often convenient to refer the phases of the waves involved
to one of the physical surfaces of the discontinuity such as the first air-dielectric interface
ini the case of a dielectric sheet. Let So be the matrix associated with the symmetric dis-
Continuity with the origin located in the plane of symmetry and let d be the over-all thick-

hess of the structure. When the origin is shifted to the front surface, 1 = -d/2, the matrix

I

I 

ij
II

I

i
I

I

I.
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SO is replaced by S = PSO P. with Xh = 2 = -2k d cos 0, where k is the propagation ons
of the surrounding medium. From (63) follows:

/= (re 2 3 e ) t2 6

At, r2 e- 2ifl O,

therefore r = ro and p' = p~ 2 ui = p' + dkcos io It is clear that the quantities p, r d
have a physical significance independent of the location of the reference plane. This fact
manifests itself mathematically by the invariance of these quantities under the transform
mation P S P with 01 = 02.

A lossless symmetric discontinuity is electrically characterized by two quantities
say, p and r", since r = VI _p'F and p 'has to satisfy (64).t The meaning of two electrical
parameters is easily understood. The physical parameters available for adjustment are
the series impedance and the shunt reactance. In the familiar case of a dielectric slab
there is no energy storage, therefore the shunt reactance in the equivalent circuit is zero.
This is, however, not the case for metal-plate slabs.

FORMULAS FOR METAL-PLATE SLABS

A slab of metal-plate medium surrounded by air is a symmetric, approximately loss.
less discontinuity and the results of the last few paragraphs apply. In order to test the
predictions of the Carlson and Heins theory it is sufficient to determine experimentallythe
magnitude of the reflection coefficient and the phase of either the transmission or the re-
flection coefficient.

With the aid of equations (57) and (59) one can derive from (46) by elementary manipu.
lations

IRI= 2p Isin al_ (66)
( 1_p2) + 4p sin p

where 4= p" + 62. The absence of loss immediately justifies the equation

rI= 1 v-JR ' (67)

From

T rr I ejT' tIt 2 exp j(6, - 62) (68)
1- r2 exp -j62

it follows that

T= 2r'- 6, + 62 + arg (l _p2 exp [_2J(p" + 62)]} (69)

factually there is an uncertainty in sign resulting in an uncertainty of T in the phase -

of the reflection coefficient.
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p2) COS 1p + j(l + p2)But 1 - p2exp [- 2j] = {(l p sin exp

and therefore

arg{1 p2 exp [- 2j 1=4* - I, (70)

where
__pp~~~~~~~~~~~~~~~~~~~~~~~~~~

4" = arc tan tan ip (71)

and the multiple valued function arc tan x is so chosen that Rand 4 'lie in the same quad-
rant. From the last three equations and equation (59) it follows that ;

T'= p' + *+r-6 1 (72) - I 

The phase of R, if required, can now be computed with the aid of (64) which applies in this
case to the quantities denoted by capital letters.

AMPLITUDE COMPUTATIONS ;

The numerical computation of I r I, i .and I r(l) I presents no difficulties. First the
limiting angle 9L IsIfoundfromFigure 4. For9 < rlis found from (26), Itlfrom (20) L

and r(') = 0. For 9 > OL, equations (37), (38) and (39) apply. Some care has to be exer-
cised in the neighborhood of the point 0 = 0, because all fractions involved are of the
form 0/0. This indeterminacy is easily removed by cancelling factors vanishing for i
0= 0. With the aid of (41) one may transform (38) to the form:

1 = 4 (co~s 9'++ c~o~s 9) tan 9+ 9 cosec9 0 . (73)
Inr 1 COS 00 + cos 9 2

The same procedure is applicable to Jr(")I and It 1. Figure 7 shows the values of p,= IJr
plotted against 9 for selected fixed values of x = 2aA. Table 1 gives the same information
in numerical form and in greater detail. While the shape of the curve p(O) resembles that
of the reflection coefficient of dielectric media for parallel polarization, the curves here
plotted do not reach the axis p = 0.

PHASE COMPUTATIONS

The numerical computation of the phases of the reflection and transmission coefficients
is a lengthy, difficult task, even in the simplest case when a diffracted beam is not present.
On account of limitations in manpower assigned to this project only those coefficients were
Computed which have a direct connection with the experimental program undertaken. The
results appear at the end of this report.

Since the quantities p', pH and V' satisfy (59), it is sufficient to compute two of these.
Only p" enters into the expression for JR I, the magnitude of the reflection from a slab of
metal-plate material. This is the quantity most easily accessible to measurement andfor
this reason the major part of the computing effort has been devoted to the computation of
P" as a function of x = 2a/A and 9 . For normal incidence p' was also computed as a func-
tion of x. This quantity will be considered first. Next p" will be calculated for normal
incidence, finally PI for oblique incidence. In this last case the angle of incidence willbe
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Fig. 7 - Nagnitude of the reflection coefficient as a
f*mction of angle of incidence (specular reflection)

so restricted that no diffracted beam occurs. The value of p' is given by equation (24).
In view of equation (9) this can be given the following form:

argK+' (-kcose)=argV(-kCos0)+argW(-kcose)- argU(-kcose)-arg(-kcos+ sc)

-ak cos 9 (In 2 - I)/*. (74)

When there is only one reflected beam the functions V(-x), W(-x) and U(-x) are complex
conjugatesof the functions V(x), W(x) andU(x)respectively, moreover -k cos 9 + K is negative,
therefore

arg K' (-k cos 9) = -arg K+ (k cos 9) + 7r. (75)

When there are two reflected beams (75) is again valid, but one has to verify it sepa-
rately for 9 > Oo and for 9 < 6b. Consequently,

p' = 2 arg K+ (k cos 0). (76)

It is now necessary to calculate arg K+(k cos 9) for the case 9 = 0. In this case from
(13) and (14) follows: I 

An =& =l _ Tr e2n I (77)

* I

* I

i I
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therefore V(w) = W(w). Also I An + i(ak/2vn) J} = 1.

It is practical to introduce the variable x defined as follows:

ka 2a (78)
X

The values of x are limited to the interval 1 to 2. For practical reasons the computations
are confined to the range 1.01 to 1.35. From (9) then follows:

ak
arg K (k) = Zarg V(k) - arg U(k) + (In 2 - 1), (79)

+ if

where

arg V(k) = l (arc sin x E)' (80)

argU(k) = - (arc sinn- n). (81)

Therefore

co n /x
' , ~~~~~~ag + (k) x(ln 2 - 1) -n2 (-) (arc sin X _-) (82)i'I-

+ n=2 nn n

The last sum can be written in the form arc sin(x/2) -arc sin(x/3) - X/6 + R(x), where

R(x) =n4()(arc sin n - n (83)

The reason for this separation is that R(x) is small. In fact, while x varies from 1.01 to
1.35, R(x) varies from .002 to .004 and the entire expression (82) varies from .33 to .47.

R(x) is calculated by expanding arc sin(x/n) inaninfinite series and then interchanging
the order of summations. This is permissible since all series involved are absolutely
convergent. From

arc sin = n + 6 (n)43 ()40 + 112 )*- (84)

it follows that

R(x)= 6+ 40 XE" n5 + - (85)

The summations can now be carried out since the function i (s) = 2 (-)f n 5S is related

to the Zeta function of Riemann and its values for s = 3, 5, 7, etc. can be found with the aid
Of the tables of the latter.

L 
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Table of the Auxiliary Function

Il (s)
X; < s 3 5 7 9 11

.$ ., I'n .010 4943 .000 7454 .000 0504 .000 0034 .000 0002

: . I The numerical form of R(x) is:

R(x) = (17490x5 + 559x5 + 22x7 + x'+ .. j. 107, 7(86)

while

arg K+(k) = -. 140 1861 x - arc sin 2 + arc sin X - R(x). (87)

In order to achieve the necessary symmetry for the calculation of p" for normal
incidence, the origin has to be moved to a point half-way between the edges, such as the
point Q in Figure 2. When this is done the expression for the phase of transmission
coefficient becomes in place of (21):

r' = arg K (k cos 9) - arg K (K). (88)

Therefore, in view of (59) and (76)

p'= 2'- p' + v =-2K (K) + v. (89)
+

-- I ,' It is therefore necessary to calculate K+(K). For normal incidence the procedure is
similar to the calculation of K+(K). However, in the present case the convenient auxiliary
variable is y = nx = Kar

From:

s It~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
it follows that

0 0 f | 1 ~~~~~~~~~~arg V(K) n~csi n 

I l * Moreover arg W( K ) = arg V(K), since in the case of normal incidence V(w) = W(w).

Similarly:

arg U() =sin (91)

Hence

X I arg K(K) = y(ln2 -1)- 2()n rcsin (92)
+: (arc j7= n
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The sum is again split as follows:

arc sin y4o .arc sin y/jf-- y/6 + S(y),

where

S(Y (_n si Yi- -) (arc sin i (93)

Let

U =en2 = (1 - 12)(94)

The binomial theorem gives:

- y 1+- n2 +8~n4 + ..............}, (95)' 
s '15 -2 35 4~

n = n{I n n 8*(-n~~~~~~

3 = on YS n3 + 3 5 +.I..+ (96)

6n_4 {

In a compact form

n 1 3 3 -

S(y)=glY+.6gsy +40g 5 Y +---' (97)

Where

g1 = 2 v (3) +.8 fl(5) + l? (7) +... = .005 5434,

gS n(3)+ 2n () + n 7) ... = .011 7153.

Sillilar expressions give for g5, g., and g9, 8878, 679 and 46 ten-millianths respectively.

The numerical form of the remainder is:

S(y) = (55434y + 19525y3+ 686y5 + 30y7 + 2y9 + .... 10 '. (98)

I

I

I

I

I
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The final expression for K+(x) is

arg K+(K) = -arc sin y/V'3 + arc sin y/ r8 -. 140 1861 -S(y). (gg)

In order to obtain p" for 0 / 0, values of K+(K) for oblique incidence are required.
These were obtained by calculating the difference between KF(K,O) and K+(K, 0) where X
latter is the function designated heretofore by K+(K).

* f .I Since U(w) does not depend on 9

arg K (K, 9) - arg K (K, 0) = arg V(K, 9) + arg W(K, 9) - 2 arg V(K, 0). (100)

From (13) it follows that

A axi (ak sin 0 1
in+ 2ifni =1 27in i 4n2 (101)

Let v= (ak/f) sin = x sin , then

arg V(x, a) = _ 1(arc sin y - -_1 (102)
)r(~2n- v)~2 - 12n1

and
arg W(c, 6) = arc sin + (103)

Introduce the function fn(v) arc sin y [(2n + V) The right side of (100) thenbecotame3

j I 3, n:f n(v)+fn(-v) -2f (0).

The summand is the second difference of the function fn(v). I is equal to fn (0)v3

7i . plus terms of higher order in 9. But fn (0) is approximately y/4n', when 1 and y2 can
be neglected in comparison to 4n2 . In the range of interest y<1. Therefore, when N is such
that 1 <<4N2 , the following approximation holds

TO i.(104)nN !n + (V) n (°.N

The terms corresponding to n = 1, 2, 3 and 4 were computed on the automatic comput-r tX ,7 , ing machine of the Operational Research Branch for angles of incidence 9 ranging from 0

to 350 in 50 intervals. The remainder term

yv2 ; n = .006099yv 2 (105)
no5

was then added. The values of p" - 7= -2 K+(K,0 ) are tabulated to four places, except
for 0 = 350 in which case only three place accuracy is available.

i 4 ~~~THE TABLES AND THEIR USE

Table 1 contains p =r I as a function of x = 2a/X from 1.01 to 1.35 and the angle of
incidence 0 from 00 to 600. In Table 2 the values of p" - if are tabulated for x = 1.01

t~~~~~H TALE AN THI US
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to 1.35 and forG = 0°to 350, the approximations adopted not being satisfactory for large
values of 9 .

A more extensive table was prepared for the case of normal incidence with values of
x ranging from 1.01 to 1.35. This presentation (Table 3) also contains the functions p'/2If
and p "/2if which are useful in practical computations.

As an example for the use of these functions one might consider the computation of
the phase change in transmission through a sheet.

Equation (72) can be put in the following form:

T2 Ip 1 d cos2 + + 2 *(106)
2ir -Fv 2 X 2iff 2if(16

Here

p= p+ n d (107)
2if 2if )

since the rays are constrained in the metal-plate medium so that 0, = 900. Having the
angle in the form '/2ir is convenient, for 4' is often quite large.

The difference 4" - i' is generally small. It can be computed quickly as follows: Let
F = (1 +p2 )/(1 - p2), then according to (71) tan 4"= F tan*4, therefore

4"~4'tan(4-4')=tan* I-tan4 F -i
_ tan (t' - )=+ta + tan4=tanan +F tantn' (108)

provided F - 1 is small.

No detailed tables were prepared for the power division at the air-metal-plate inter-
face. Figure 5 contains the available information.

Table 4 gives the direction of the first diffracted beam as a function of x and the angle
Of incidence. It also contains the angle 00 = arc cos n as a function of x. This is the an-
gle of incidence for which the interesting equidistribution of power noticed by L. J. Chu
takes place.
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TABLE 1
Magnitude of the Reflection Coefficient P for Varying Angle of Incidence

x = e

1.01
1.02
1.03
1.04
1.05

1.06
1.07
1.08
1.09
1.10

1.11
1.12
1.13
1.14
1.15

1.16
1.17
1.18
1.19
1.20

1.21
1.22
1.23
1.24
1.25

1.26
1.27
1.28
1.29
1.30

1.31
1.32
1.33
1:34'': ! I ~~~1.35 .1 

: *Second lobe

* I

6 =0

.7538
.6708
.6134
.5690
.5327

.5019

.4752

.4517

.4307

.4118

.3947

.3790

.3646

.3512

.3388

.3273

.3166

.3065

.2970

.2880

.2796

.2716

.2640

.2568

.2500

.2435

.2373

.2314

.2257

.2203

.2151

.2101

.2053
2007
1963

50

.7530

.6697

.6122

.5677

.5313

.5005

.4737
.4502
.4292
.4102

.3931

.3774
.3629
.3495
.3371

.3256

.3148
.3047
.2952
.2863

.2778
.2698
.2622
.2550
.2482

.2417

.2355
.2295
.2239
.2185

.2133
.2083
.2035
.1989
.1945

100

.7505

.6665
.6086
.5838
.5272

.4961

.4692
.4456
.4245
.4055

.3882

.3724

.3579
.3445
.3321

.3205
.3096
.2995
.2900
.2810

.2725

.2645
.2569
.2497
.2428

.2363
.2300
.2241
.2184
.2130

.2078
.2028
.1980
.1934
.1890

present.
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I

I.

S

�

i

150

.7462

.6611
.6025
.5572
.5201

.4888

.4617
A4378

.4165

.3973

.3799

.3640

.3494

.3359

.3234

.3118
.3009
.2907
.2811
.2721

.2635

.2555

.2478

.2406

.2337

.2271

.2209

.2149
.2092
.2037

.1985

.1935

.1887

.1841

.1796

200

.7401

.6533

.5937

.5476

.5100

.4782

.4508

.4266

.4050

.3857

.3681

.3520

.3373

.3237
.3110

.2993
.2883
.2780
.2684
.2592

.2507

.2426

.2349
.2276
.2206

.2140

.2077
.2017
.1960
.1905

.1852

.1802

.1754

.1707
.1662

250

.7318

.6428

.5818

.5348

.4965

.4642

.4362

.4117

.3898
.3702

.3524

.3361

.3212
.3074
.2946

.2827
.2716
.2612
.2515
.2423

.2336

.2255
.2177
.2103
.2034

.1967
.1904
.1843
.1785
.1730

.1677

.1626

.1578

.1531

.1486

300

.7210

.6293

.5666

.5184
*4792

.4462

.4176

.3926

.3704
.3504

.3323

.3158
.3006
.2867
.2737

.2617

.2504
.2399
.2301
.2208

.2120

.2038

.1959
.1885
.1815

.1748

.1684

.1623

.1564

.1509

.1455

.1404

.1355
*1737
$1980

I ,

I
I

i

f

I

I

t

i

I

I

I

I

iI
I
I

i

I

Ii

I

I
i

I

I
I
i

I

i
T
I

i

I If, .1
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TABLE 1

-continued-

x j 350 400 j 450 500 j 550 600

1.01
1.02
1.03
1.04
1.05

1.06
1.07
1.08
1.09
i,1o

1.10
1.12
1.13
1.14
1.15

1.16
1.17
1.a8
1.19
1.20

1.21
1 1.22

1 1.23
1.24
1.25

1.26
s 1.27

1.28
1.29
1.30

1.31
1.32
1.33
1.34
1.35

.7074

.6122

.5474
.4978
.4575

.4236

.3944

.3688

.3461

.3258

.3073
.2905
.2751
.2609
.2478

.2356

.2242

.2135

.2036
.1942

.1853

.1770
.1690
.1615
.1544

.1476

.1412
*.19 48
* * 2206

*.2402

*.2566
*.2709
*.2837
*.2953
*.3060

.6903

.5908
.5235
.4722
.4306

.3957
.3658
.3395
.3163
.2955

.2767

.2596
.2439
.2294
.2161

.2037

.1921

.1813

.1712

.1617

.1528
*.1793
*.2215
*.2481
*.2691

*.2870
*.3026
*.3165
*.3292
*.3408

*.3515
*.3615
*.3709
*.3797
*.3880

.6687

.5641

.4938

.4405

.3974

.3614

.3306
.3037
.2798
.2585

.2393

.2218

.2059

.1912
.1776

.1650

.1533
*.2227
*.2582
*.2845

*.3062
*.3248
*.3412
*.3559
*.3693

*.3815
*.3928
*.4033
*.4131
*.4223

*.4310
*.4392
*.4469
*.4543
*.4614

.6415

.5307
.4569
.4012
.3565

.3193

.2875

.2598

.2353

.2135

.1939

.1761

.1598
*.2347
*.2776

*.3085
*.3335
*.3547
*.3732
*.3896

*.4044
*.4179
*.4302
*.4416
*.4522

*.4621
*.4713
*.4800
*.4882
*.4960

*.5033
*.5104
*.5171
*.5234
*.5296

.6068

.4886

.4107
.3524
.3058

.2672

.2344

.2059
.1808

*.1849

*.2709
*.3150
*.3479
*.3747
*.3973

*.4169
*.4342
*.4497
*.4638
*.4766

*.4883
*.4992
*.5093
*.5187
*.5275

*.5358
*.5436
*.5510
*.5581
*.5647

*.5711
*.5772
*.5830
*.5886
*.5939

.5616
.4346
.3521
.2909
.2423

.2024

.1686
*.2801
*.3370
*.3771

*.4086
*,4345
*.4566
*.4758
*,4927

*.5078
*.5214
*.5338
*.5452
*.5557

*.5654
*.5744
*.5829
*.5908
*.5982

*.6053
*.6120
*.6183
*.6244
*.6300

*.6356
*.6408
*.6458
*.6506
*.6553

3ecOnd lobe present
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TABLE 2
Phase of the Back Surface Reflection Coefficient

Table of P" - ir (in radians)

x 0=00 50 100 150 200 250 300

1.01 .1049 .1064 .1107 .1180 .1284 .1425 .1609
1.02 .1490 .1511 .1573 .1679 .1832 .2038 .2307 .184
1.03 .1832 .1858 .1937 .2070 .2265 .2527 .2869 IR
1.04 .2124 .2155 .2248 .2408 .2639 .2952 .3363 3
1.05 .2384 .2419 .2527 .2710 .2977 .3340 .3818

1.06 .2622 .2662 .2782 .2990 .3292 .3704 .4248 .4A
1.07 .2843 .2888 .3023 .3253 .3590 .4051 .4663 547
1.08 .3052 .3101 .3249 .3503 .3875 .4586 .5067 598
1.09 .3250 .3303 .3465 .3742 .4150 .4712 .5465 .648
1.10 .3440 .3498 .3673 .3975 .4418 .5032 .5861 .69e

1.11 .3623 .3685 .3874 .4200 .4681 .5348 .6256 .749
1.12 .3799 .3866 .4069 .4420 .4939 .5662 .6652 .802
1.13 .3970 .4042 .4259 .4636 .5194 .5976 .7052 .855
1.14 .4137 .4213 .4445 .4848 .5447 .6290 .7458 .911
1.15 .4300 .4381 .4628 .5058 .5700 .6605 .7872 .968

1.16 .4460 .4546 .4809 .5265 .5951 .6923 .8293 1.028
1.17 .4616 .4708 .4986 .5472 .6202 .7245 .8727 1.091
1.18 .4770 .4866 .5162 .5677 .6454 .7571 .9174 1.158
1.19 .4921 .5022 .5335 .5881 .6707 .7902 .9636 1.229

1.20 .5071 .5177 .5508 .6085 .6964 .8240 1.0115 1.306

1.21 .5218 .5331 .5678 .6289 .7222 .8587 1.0615 1.389
1.22 .5364 .5482 .5849 .6493 .7483 .8941 1.1138 1.480
1.23 .5508 .5632 .6018 .6698 .7747 .9305 1.1688 1.583
1.24 .5650 .5782 .6187 .6904 .8015 .9680 1.2271 1.701
1.25 .5792 .5930 .6356 .7113 .8288 1.0069 1.2893 1.844

1.26 .5932 .6077 .6525 .7323 .8567 1.0471 1.3560 2.032
1.27 .6072 .6223 .6693 .7532 .8850 1.0888 1.4282 2.391
1.28 .6211 .6369 .6862 .7744 .9140 1.1323 1.5074 2.537
1.29 .6349 .6515 .7031 .7960 .9437 1.1781 1.5963 2.523
1.30 .6486 .6660 .7200 .8178 .9743 1.2261 1.6976 2.509

f

f

I

I

I

k

t

I

I
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I

i
I
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i
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i
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I
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TABLE 3
Tables for Normal Incidence

.7538
.6708
.6134
.5690
.5327

.5019

.4752
.4517
.4307
.4118

.3947
.3790
.3646
.3512
.3388

.3273

.3166

.3065

.2970

.2880

.2796

.2716
.2640
.2568
.2500

.2435

.2373

.2314

.2257

.2203

.2151

.2101

.2053

.2007

.1963

-. 6589
-. 6663
-. 6738
-. 6813
-. 6889

- .6955
-.7041
-. 7117
-. 7194
-. 7271

-. 7349
-. 7427
-. 7506
-. 7585
-. 7664

-. 7744
-.7824
-. 7905
-;7986
-. 8067

-. 8150
-. 8232
-. 8316
-. 8399
-. 8484

-. 8569
-. 8654
-.8740
-. 8827
-. 8914

-. 9002
-.9091
-. 9180
-. 9270
- .9360

-. 10487
-. 10605
- .10724
- .10844
-. 10964

-. 11068
-. 11206
-. 11327
-. 11450
-. 11573

- .11696
-. 11821
-. 11946
- .12071
- .12197

-. 12324
- .12452
- .12581
-. 12710
-. 12840

- .12971
- .13102
-. 13235
-. 13368
- .13502

-. 13637
- .13773
- .13910
- .14048
- .14187

- .14327
- .14468
- .14610
-. 14753
-. 14898

31

I.

I

Lx A I P -I 2rr

1.01
1.02
1.03
1.04
1.05

1.06
1.07
1.08
1.09
1.10

1.11
1.12
1.13
1.14
1.15

1.16
1.17
1.18
1.19
1.20

1.21
1.22
1.23
1.24
1.25

1.26
1.27
1.28
1.29
1.30

1.31
1.32
1.33
1.34
1.35

.14037

.19706
.23959
.27467
.30491

.33167

.35575

.37770
.39789
.41660

.43403

.45034

.46567

.48014

.49382

.50679

.51912

.53086

.54207

.55277

.56302
.57283
.58225
.59130
.60000

.60837

.61644

.62422

.63172

.63897

.64597

.65275
.65930
.66564
.67179

.1049

.1490

.1832
.2124
.2384

.2622

.2843

.3052

.3250

.3440

.3623

.3799

.3970

.4137

.4300

.4460

.4616

.4770

.4921

.5071

.5218

.5364

.5508

.5650

.5792

.5932

.6072

.6211

.6349

.6486

.6623

.6759

.6895

.7031

.7167

.51670
.52371
.52916
.53380
.53794

.54173

.54525

.54857

.55173

.55475

.55766
.56047
.56319
.56585
.56844

.57098

.57347

.57592

.57832

.58070

.58305

.58536

.58766

.58993

.59218

.59442

.59664

.59884

.60104

.60323

.60540

.60758
.60974
.61191
.61406

I

f
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i
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x= 2a

1.05
1.06
1.07
1.08
1.09

1.10
1.11
1.12
1.13
1.14

1.15
1.16
1.17
1.18
1.19

1.20
1.21
1.22
1.23
1.24

1.25
1.26
1.27
1.28
1.29

1.30
1.31
1.32

-I I

9
0

TABLE 4
Azimuth of the First Diffracted Beam and the Angle

0= arc cosn.
Values of 8' in degrees

5 = 350 8 = 400
I I l i

72.25
70.63
69.16
67.81
66.55

65.38
64.28
63.23
62.25
61.31

60.41
59.55
58.73
57.94
57.18

56.44
55.74
55.05
54.39
53.75

53.13
52.53
51.94
51.38
50.82

50.28
49.76
49.25

81.47
77.64 a

74.77
72.39
70.32

85.24
79.49
75.96

73.18
70.82
68.75
66.88
65.18

63.60
62.12
60.73

8 = 450

81.04
76.80

73.65
71.05
68.79
66.77
64.93

63.24
61.67
60.19
58.80
57.49

56.24
55.05
53.91

1.33 48.75 68.46 59.43 52.81 47.54 43.20 39.62 36.62
I ', 1.34 48.27 66.77 58.18 51.76 46.59 42.33 38.79 35.89
l l I 1.35 47.79 65.22 57.00 50.75 45.68 41.48 37.99 35.11

8 = 500

81.24

76.68
73.35
70.62
68.26
66.15

64.24
62.48
60.84
59.31
57.87

56.51
55.21
53.98
52.79
51.66

50.57
49.52
48.51

6 = 55 

87.48
79.31
75.14
71.95
69.27

66.92
64.82
62.91
61.14
59.49

57.94
56.49
55.10
53.79
52.54

51.34
50.19
49.08
48.03
46.99

46.00
45.04
44.11

l l 60

80.34
75.66

72.20
69.35
66.88
64.67
62.67

60.82
59.11
57.50
55.99
54.55

53.19
51.89
50.65
49.46
48.32

47.22
46.16
45.14
44.15
43.19

42.26
41.35
40.48

86.81
78.66
74.33
71.00
68.21

65.77
63.57

61.57
59.72
58.00

56.39
54.87
53.43
52.03
50.75

49.50
48.30
47.14
46.03
44.96

43.92
42.92
41.95
41.01
40.10

39.21
38.35
37.51

I

i

I

i
i1

I
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APPENDIX
Calculation of the Magnitude of the Reflection and Transmission Coefficients r

In order to find the magnitudes of certain coefficients occurring on pages 8-11, it is
necessary to evaluate the absolute value of the complex function K+(w) and its derivative
for certain special values of the variable w. In particular, IK+(w) I is needed for w=kcosO 
and K, while IKt'(w) I is needed for w = k cos 9 and - k cos O'. Direct substitution in the
infinite products defining K+(w) leads to extremely cumbersome expressions; a somewhat
different method is therefore preferable.

The functions K+(w) and K_(w) are defined by (9) and (15). On multiplying their
absolute values the following equation results:

a I w + k cos 0 w + K U-w IW((w)U*(w)
IK(w)KE,(w)1=IIwkcos

In view of (8) the left side of (1A) might also be written as I f(w) [K+(w)] ' L

When w is real, the last factor on the right of (1A) is always one, since W(- w) =W(w)*
and U(- w) = U(wp . When A1 is real then also V(- w) = V(w)* and in this case

If(w)| IK (W)1, a W + k cos 9 w +9 (2A)

When A, is imaginary but A2 is real, for every real w

L-Vw) J= Ik cos o' + wl
FV(-wji kcos0'-w '

and therefore

{f(W)| 1K+(w 2a w + k cos e w -10 1w + k COS (3A)+w, 2~- 1w-k cos0llw+1I iw-kcos 9
To derive an expression for IK+(k cos 0)1, it is only necessary to multiply (2A) or (3A)
by (w - k cos 9) and then let w tend to k cos 9. According to L' Hospital's rule

lim f(w)(w - k cos 9) = 1/ak cos 9,

therefore

IK (k cos 0)12= a kIcos2 0 k cos - KK (4A)+ k cos 9+ 
When A is real and

IK (k cos 0)2= a2ee cos 2 k cos - cos 9 + cos 9' (5A)+ ~~~~~k cos 9+K co 9O - cos 9'

When A, is imaginary.
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The omission of the absolute value signs on the right of (4A) and (5A) is justified in vieW
of the fact that cos 9 > n for real A, and that for imaginary A&, n = cos 9g lies between
cos 9 and cos 9' as seen from (41).

The calculation of IK+(K)j requires the evaluation of the limit:

lim = 1 1 lim sin a Vk'
19K W-K k2 _K 2 cos a Yk ' - cos (ak sin 9) W4 -K

Since k2 _ K 2 = ir2/a.2 this limit becomes

a3 g 1

7 1 + cos(ak sin9O)
Therefore

K (K) 12 = k Cos 0 + Cos (ak sin 0)]

when A1 ivrealand

K+(K) 12 2 k coS 0 +K k cos9' 0+ + cos (ak sin )] (+ 4 a K2 k cos -9- k cos 0 Fi+ cs (

when A1 is imaginary.

Since K+(w) has a simple root at w = - k cos 9

K (w)
lK' (-k coso0)1= lim ++ w-1kcogm w + k cos 0

Equations (2A) and (3A) are divided by (w + k cos 9) and the left side is written in the
form

| w ) (wcosk )osw + k cos 121

From lim (w+ k cos 9) f(w) = -/ak cos 9 then follows:
W4-k cosS

|K+(-k cos O)12 = 2 k cos +K4 kCos 9-

(8A)

7A)

8A)

9A)

when A1 is real and

K'(-k cos )12 =a2 kcos 0+ cos 9 - cos O'
+IK cC 4kcos 9-K Cos 0 + Cos 5' (1OA)

when A 1 is imaginary.

The calculation of K' (-k cos 0') is similar. In this case

lim f(w) (w +k cos ')=-1/
* I * - I o

ow-

'a k cos O'.

* * . -I' ,' ; . I
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Hence

IK (-k cos -')12 2 k cos 9'+ K COS ' - COS 9
cos 4 k Cos 91 -C co CO9' + COS 9

From (23), (4A) and (9A) follows

k cos 9 -K
Ir 1=k cos 0 +K (12.

for real A,, while for imaginary A1 (23), (5A) and (1OA) give

IrI= k cos 9 -ic cos 9 + cos O' (13
k cos 0 +K COS O - Cos (3

Expressions for Itl and r are obtained in the same way. The formulas (20), (37) and
(39) result.

A)

(llA)

A)
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